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Abstract

A series of experiments were conducted to quantify and characterize the optical and physical 

properties of combustion-generated aerosols during both flaming and smoldering combustion of 

three materials common to underground mines—Pittsburgh Seam coal, Styrene Butadiene Rubber 

(a common mine conveyor belt material), and Douglas-fir wood—using a combination of 

analytical and gravimetric measurements. Laser photometers were utilized in the experiments for 

continuous measurement of aerosol mass concentrations and for comparison to measurements 

made using gravimetric filter samples. The aerosols of interest lie in the size range of tens to a few 

hundred nanometers, out of range of the standard photometer calibration. To correct for these 

uncertainties, the photometer mass concentrations were compared to gravimetric samples to 

determine if consistent correlations existed. The response of a calibrated and modified 

combination ionization/photoelectric smoke detector was also used. In addition, the responses of 

this sensor and a similar, prototype ionization/photoelectric sensor, along with discrete angular 

scattering, total scattering, and total extinction measurements, were used to define in real time the 

size, morphology, and radiative transfer properties of these differing aerosols that are generally in 

the form of fractal aggregates. SEM/TEM images were also obtained in order to compare 

qualitatively the real-time, continuous experimental measurements with the visual microscopic 

measurements. These data clearly show that significant differences exist between aerosols from 

flaming and from smoldering combustion and that these differences produce very different 

scattering and absorption signatures. The data also indicate that ionization/photoelectric sensors 

can be utilized to measure continuously and in real time aerosol properties over a broad spectrum 

of applications related to adverse environmental and health effects.
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1. Introduction

Carbonaceous aerosols generated from a variety of combustion sources generally appear as 

fractal aggregates of various shapes and sizes, depending upon the mode of combustion, the 

combustible material, and so on. Aerosols generated from internal combustion engines, such 

as diesels, or from open and well-ventilated flaming fires, tend to produce fractal aggregates 

of mostly carbon (i.e., black carbon aerosols/soot) with relatively small primary particles 

and elongated, chain-like morphologies, while those produced from fuel-rich fires and 

smoldering surface fires of solid combustibles tend to have lower levels of carbon, larger 

primary particles, and clumped or more densely packed morphologies [19]. Both types of 

aerosols generally have maximum average dimensions in the range of 200 to 500 nm but 

their radiative transfer properties (scattering, absorption, extinction) can vary dramatically. 

Fractal aggregates are generally characterized by a set of parameters that include the fractal, 

or Hausdorff dimension, Df, the radius of gyration, Rg, the diameter, dp, of each primary 

particle forming the aggregate, and the average number of these primary particles per 

aggregate, np. The fractal dimension is generally a measure of the shape of the aggregate, 

where values in the range of 1.6 to 1.9 correspond to aggregates that have an elongated, 

chain-like structure with very little overlap of individually connected particles. Higher 

fractal dimensions, generally in the range of 2.1 to 2.3, correspond to aggregates that are 

more compact, with individual particles significantly overlapped or necked together.

Another critical parameter in the quantification of optical and physical properties of aerosols 

is the measurement of the aerosol mass concentration. There are many techniques available 

to make this measurement, and some of the more commonly used instruments for real-time 

or near real-time mass concentration measurements include the Tapered Element Oscillating 

Microbalance (TEOM), TSI Scanning Mobility Particle Sizer (SMPS), Aerodynamic 

Particle Sizer (APS), TSI Condensation Particle Counter (CPC), TSI DustTrak, Dekati 

Electrical Low Pressure Impactor (ELPI), beta attenuation monitor (BAM), continuous 

aerosol mass monitor (CAMM), MiniVol, and so on [4, 7–9, 16, 22]. While these 

instruments are available at varying levels of cost and complexity, it has been reported that 

some instruments suffer from problems due either to the type of measurement or to the 

electronics used to process the signals. In some cases sample artifacts make data 

interpretation more difficult [3]. There are only a few studies available in the literature that 

compare different methods and instruments for continuous measurement of aerosol mass 

concentrations. Of the comparison studies available, Moosmuller et al. [16], Kelly and 

Mcmurry [7] and Anderson noted that the TEOM agreed well with the gravimetric 

measurements using a time constant correction factor [9]. Chung et al. [4] found that BAM 

and CAMM correlate well with filter-based measurements for monitoring PM2.5 airborne 

particulate matter. Yanosky et al. [22] noted that in comparison to the FRM (Federal 

Reference method) samples, APS measurements were less precise and less accurate [22].

In the present study, DustTrak mass measurements were compared to both gravimetric mass 

measurements and the mass measurements obtained from a modified and previously 

calibrated combination ionization/photoelectric UCB smoke sensor. The UCB device is used 

here to validate its accuracy as a simple device and technique to define properties of smoke 

generated from different combustible materials. The DustTrak instruments were chosen on 
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the basis of lower cost, portability, higher signal to noise ratio, less interference from non-

particulate sources or gases, and ease of use/calibration. SEM/TEM images were also 

obtained for smoke generated from flaming and smoldering materials in order to analyze the 

size and morphology of the aggregates and to compare these analyses with those obtained 

using the other experimental data.

Because the DustTrak generally overestimates the mass concentration, it is important, if 

possible, to quantify correction factors or expressions that can be used to reduce the data and 

obtain accurate aerosol mass concentrations. The DustTrak operates on the principle of light 

scattering using a laser diode that emits at a wavelength of 780 nm. The chamber of the 

DustTrak is designed with a lens that is positioned at 90° to both the aerosol stream and laser 

beam and focuses the scattered light into a photodiode. The signal from the photodiode is 

converted into voltage which is directly proportional to the aerosol mass concentration. 

Since the instrument is calibrated specifically with Arizona road dust (typically PM10 or 

PM2.5), the factory calibration may not apply to all types of aerosol generated from various 

combustion sources. Many reported studies use a correction factor of 3 or less when 

measuring aerosol mass concentration using a DustTrak, especially when analyzing diesel 

particular matter or PM2.5 [8, 10, 16, 18, 22]. In the current study, the TSI DustTrak (Models 

8530 and 8520) measurements were compared with the gravimetric mass measurements for 

aerosols generated from both flaming and smoldering fires of different combustion sources, 

including pulverized Pittsburgh seam coal, Douglas-fir wood chips, and styrene butadiene 

rubber (SBR) conveyor belt in order to determine an accurate DustTrak calibration factor 

that could be used for combustion-generated aerosols with diameters in the range of 0.010–

1.0 μm in diameter.

Even though smoke detectors are primarily used to monitor and detect smoke for purposes 

of fire protection, the feasibility of using a modified smoke detector as a low-cost particle 

monitoring device is also discussed in this study. It has been observed that ionization-type 

smoke detectors respond better to the smaller diameter particles produced from flaming 

combustion, while the photoelectric-type smoke detectors respond better to the larger 

diameter particles produced from smoldering combustion [2, 14, 15, 17, 21]. Additional 

research conducted by NIOSH reveals that the ionization-type detector also shows a high 

response to smaller particles produced from the exhausts of diesel engines, while the 

photoelectric type detector shows a much lower response [11]. For the larger particles 

produced from smoldering combustion, the reverse is true. In a previous study using the 

UCB sensor, it was shown that both the optical and ionization responses per unit aerosol 

mass and aerosol surface concentrations correlated with the ratio of ionization to 

photoelectric signals, and were in opposite directions [13]. In order to further investigate the 

UCB sensor as a low-cost particle monitor, the outputs of the photoelectric and ionization 

chambers were recorded and the data reduced using a simple theory (discussed below) to 

calculate properties of the smoke aggregates as well as the aerosol mass concentrations for 

comparison to the DustTrak measurements. In addition to the UCB sensor, the responses of a 

similar prototype optical/ionization detector (OPTION sensor) that measures angular 

scattering at two forward angles, along with the response of an ionization chamber, were 

also obtained and used to calculate the properties of the aggregates for comparison with the 

UCB sensor data and the DustTrak and gravimetric mass measurements [13]. Overall, the 
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size, morphology and indirectly, the chemistry, of aerosols produced from a variety of mine 

combustibles can vary significantly, making such aerosols more (or less) difficult to detect, 

thereby impacting the performance of smoke sensors used for fire detection and making the 

hazards (visibility and toxicity) produced from fires more (or less) severe. Quantifying and 

subsequently correlating aerosol properties with fire detection and fire hazard is one 

important step towards improving underground fire safety.

2. Theory and Background

The chemistry, morphology, and size of fractal aggregates produced from combustion 

aerosols vary depending on the source and the nature of the fire from which they are 

generated, and these properties, in turn, produce unique scattering and extinction properties. 

Farias et al. [6] and Sorensen [20] have used light scattering signatures (intensity versus 

angle) to derive average size (radius of gyration, Rg) and fractal dimension, Df, through the 

use of q, the modulus of the scattering vector, defined in Eq. (1).

(1)

where θ is the scattering angle measured from the forward direction and λ is the 

wavelength, either 635 or 532 nm for the work reported here. For small angles, and with 

qRg<1, scattering is in the so-called Guinier regime where the intensity is independent of the 

index of refraction and given approximately by the Guinier equation, as in Eq. (2).

(2)

Similarly, for large values of q and qRg » 1, the angular intensity varies according to Eq. (3).

(3)

Thus, for small q, a plot of I(q) versus q2 yields the radius of gyration, Rg, while at large q, 

ln(I(q)) versus ln(q) yields the fractal dimension, Df. For the aggregate particles, the 

applicable fractal power law is given by Eq. (4).

(4)

Since Rg and Df can be obtained from the angular scattering data, the primary particle 

diameter is the remaining parameter to be determined. Generally, SEM or TEM 

measurements provide sufficient information to determine dp, but these techniques are 

unable to provide continuous, real-time information. To determine approximate values of dp, 

the response of the ionization chamber from either the UCB or OPTION sensor is used in 

the following manner. For voltage changes less than about 1 to 1.2 V, the change in voltage 
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from the ionization chamber can be approximated using a Taylor series expansion that leads 

to the linear Eq. (5), where dg is the number mean diameter, d10 is the count mean diameter, 

and d30 is the diameter of average mass [12, 13].

(5)

The mass concentration, M, in mg/m3, can be expressed by Eq. (6).

(6)

The ratio CEV/M, for an aggregate size distribution that is assumed to be lognormal with a 

geometric standard deviation of σg = 1.70, is given by Eq. (7) [12, 13].

(7)

In a previous study using the UCB sensors, Di was found to have a value of 0.1522 cm2/s, 

although a generally accepted minimum value is much lower at 0.042 cm2/s. For the studies 

reported here, a value of Di equal to 0.0646 cm2/s is used and it should be noted that the 

classic Langevin theory for determination of Di yields a similar value of 0.06631 cm2/s at 

standard temperature and pressure. Using Di = 0.0646, Eq. (7) can be rearranged to yield dg 

[12, 13].

(8)

For the assumed lognormal distribution with σg = 1.70, d10 is 1.15 times dg, and using the 

value of Di = 0.0646 cm2/s, Eq. (5) can then be rearranged to yield the following expression 

for N.

(9)

Since the aerosol mass concentration is the average mass of an aggregate, Ma, times the 

number concentration, N, Ma is given by the simple Eq. (10).

(10)

Similarly, the mass of an aggregate is the mass of an individual primary particle (particle 

density, ρp, × particle volume, ) times the average number of primary particles per 

aggregate. Using Eq. (4), the average mass of an aggregate can then be expressed as in Eq. 

(11).
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(11)

And solving this expression for dp yields Eq. (12).

(12)

Once dp is determined, the average number of primary particles per aggregate can then be 

determined. It should be noted that Eq. (11) implicitly assumes that the primary particles 

forming the aggregate just barely touch and that no overlap occurs. In general, this is 

approximately true for fractal aggregates (FAs) with Df in the range of 1.7 to 1.9, but for 

higher fractal dimensions, significant overlap does occur, and this should be accounted for in 

the above expressions.

In order to calculate the mass using the UCB sensor, the relationship between the ionization 

chamber response and the optical scattering chamber response was used. The ionization 

chamber sensitivity, CEV/M, and the optical scattering sensitivity, V45/M, correlate with the 

dimensionless ratio, CEV/V45, over a broad range of aerosol diameters as shown in Fig. 1 

[12]. Detailed theory and calculations using this instrument can be found elsewhere [11, 12]. 

The calibration plot in Fig. 1 and the resultant empirical correlations were used to calculate 

the UCB mass measurements presented in this study.

3. Experimental Details

Experiments were conducted using a standard Underwriters Laboratory Inc. (UL 268) 

smoke chamber connected to a combustion chamber containing a circular disk heater that 

was used to heat the solid combustibles [5]. The combustible materials used in both flaming 

and smoldering experiments were wood chips from dried Douglas-fir, Pittsburgh seam coal 

(−9.4 to +6.7 mm mesh) and styrene butadiene rubber (SBR) from a typical non-fire 

resistant conveyor belt.

Once in the smoke chamber, the aerosol was mixed uniformly using two small circulating 

fans. Inside the smoke chamber, optical density of the aerosol was measured over a 1.48-m 

optical path length using an incandescent lamp and a standard photocell with spectral 

response matching the spectral response of the human eye. In some of the earlier 

experiments, light extinction over a 0.65-m path at a wavelength of 532 nm was also 

measured within the smoke chamber using a small laser and silicon photodiode. Also, the 

modified UCB smoke sensor was placed inside the smoke chamber and its response was 

obtained through a microprocessor. During the experiments, the aerosols were continuously 

extracted from the smoke chamber using metal tubes inserted into the top of the smoke box 

and flowed to various measuring devices.

In addition to the measurements of visible light obscuration and light extinction at 532 nm, 

data acquired during the experiments also included discrete angular scattering at 
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wavelengths of 635 nm and 532 nm and at four forward and two backward angles, 15°, 22½

°, 30°, 45°, 135°, and 150°, using a precisely machined scattering chamber described in 

detail in a separate manuscript [11, 12]. The normalized angular scattering data were 

subsequently used to derive the fractal properties Rg and Df. One port was connected to a 

DustTrak for mass measurement and another was connected to a PM2.5 nozzle where the 

combustion aerosols were extracted using a pump operating at 1.75 l/min and collected on 

2.0-μm, 37-mm Teflon filters for direct mass measurements. Prior to the experiments the 

pump was calibrated with a Gilian Gilibrator2 calibration system traceable to NIST 

standards. Each sample was collected for about 10 min–15 min measured from the time the 

DustTrak reading stabilized in the range of 70 mg/m3–100 mg/m3 (uncorrected) to obtain an 

accurate mass measurement. The filters were stabilized at ambient temperature at least 24 h 

before weighing to obtain the mass measurements to evaporate any organic vapors. Each 

sample was weighed twice and the average reading was used for the calculations. The 

difference between the two measurements was found to be negligible (typically less than 

2 %). A RADWAG 60/220/C/2 analytical balance was used for the mass measurements. At 

least three filter samples were collected for each combustion source for flaming and 

smoldering fires during the course of the study. Continuous measurements of the aerosol 

mass concentrations were made using either a TSI DustTrak 8520 or 8530.

Samples were also flowed to the prototype OPTION sensor that consisted of a well-defined 

ionization chamber and an optical scattering chamber for discrete measurements of angular 

scattering at 15° and 30° at a wavelength of 635 nm. The ionization chamber and angular 

sensitivities were obtained in units of voltage change per unit mass concentration. Angular 

intensity data from this prototype sensor were also used to derive the radius of gyration for 

comparison to the values obtained from the six-angle scattering chamber; and the ionization 

chamber response was used to determine the average number concentration of aggregate 

particles, average mass of an aggregate, primary particle diameter, and number of primary 

particles per aggregate as detailed in Eqs. (4)–(12). Similarly, for all of the combustion 

sources, filter samples were taken for subsequent analysis using Scanning Electron 

Microscopy (SEM) and Transmission Electron Microscopy (TEM). SEM images were 

obtained using a JEOL 6400 scanning electron microscope (JEOL, Inc., Tokyo, Japan) from 

samples collected onto 25-mm polycarbonate membrane filters (Millipore) and coated with 

gold/palladium before imaging. TEM images were viewed using a JEOL 1220 transmission 

electron microscope (JEOL, Inc.) from samples directly collected on formvar-coated TEM 

grids.

4. Results and Discussion

4.1. Mass Concentrations and Correlations

Aerosol mass concentration is one of the critical measurements in characterizing aerosol 

properties. Even though the DustTrak is a convenient device for continuous measurement of 

aerosol mass concentration, accurate calibration of the instrument is important in order for 

reliable measurements to be obtained. Since this device operates on a light scattering 

principle, mass concentration measurements can vary with the type of combustion or the 

mode of combustion due to differences in particle size, morphology, and chemistry.
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Figure 2 above indicates the change of uncorrected DustTrak mass concentration vs time, for 

smoldering Douglas-fir wood. In this particular experiment, the filter sample was collected 

from 400 s to 850 s (i.e., for 7 min, 30 s). All the filter measurements in the study were 

acquired in a similar manner, where smoke was flowed into the smoke box and a sample was 

drawn out of the box a few minutes after the maximum peak was reached.

In order to calculate the accurate filter mass concentration (Cm) the following equation was 

used.

where MTOT is the total mass collected on the filter (mg), QFLOW is the volumetric flow rate 

(m3/min) and t is the sample collection time (min). Table 1 compares the DustTrak 

measurements versus the filter sample measurements for aerosols from both flaming and 

smoldering combustion for the three different combustible samples, with the resultant 

correction factors being the ratio of DustTrak mass concentration to filter mass 

concentration.

It was found that the average DustTrak correction factor for the aerosols generated from 

smoldering combustion was 3.39 (±0.96), and for the aerosols generated from flaming 

combustion, 3.55 (±0.87). The total average correction factor for aerosols from both flaming 

and smoldering combustion was 3.47 (±0.90). Because the DustTrak uses the light scattering 

principle to determine the aerosol mass concentration, it is not surprising that the differences 

in chemistry, size, and morphology from the aerosols generated from flaming and those 

generated from smoldering combustion sources resulted in two slightly different DustTrak 

correction factors. However, it is important to note that even though substantial differences 

may exist between aerosols from flaming combustion compared to those produced from 

smoldering combustion; the resultant DustTrak correction factors are essentially the same.

Figure 3 summarizes the DustTrak correction factor by different combustion source. Only 

the DustTrak correction factor for aerosol from smoldering SBR was found to be somewhat 

smaller (~8 to 9%) than those correction factors obtained for other flaming and smoldering 

experiments. It is also of interest to note that these values are somewhat higher than those 

previously reported. Chung et al. [4] reported that when he compared the DustTrak 

measurements for PM2.5 with gravimetric and TEOM measurements, the correction factor 

was almost 3. In 2002, Yanosky et al. [22] reported a correction factor of 2.57 for PM2.5 in 

indoor air, which was slightly higher than Ramachandran's et al. [18] value of 1.94 obtained 

for the same type of aerosol. The data in this report were obtained for two DustTrak models 

8520 and 8530, and no difference was found between the two for the resultant correction 

factors.

Table 2 tabulates the correlations between the DustTrak measurements and the mass 

measurements obtained from the UCB sensor. The UCB mass concentrations were 

determined using the correlations shown in Figure 1. In Table 2, the DustTrak measurements 

are compared to both UCB linear mass measurements and UCB logarithmic mass 

measurements. The linear UCB mass measurement is derived from the approximate Taylor 
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series expansion of the exponential response of the UCB sensor, while the UCB logarithmic 

mass measurement utilizes the UCB exponential response without any approximation. For 

the smoldering fires the ratios of DustTrak mass to filter mass and DustTrak mass to the 

UCB logarithmic mass correlate very well, with only ~5 % standard deviation. The 

correlation between the ratio of DustTrak mass to UCB linear mass for smoldering aerosols 

was found to be slightly higher and may be due to the fact that the ionization measurements 

were beyond the linear range of the Taylor series expansion. Therefore, the logarithmic 

values may be more realistic for aerosols from smoldering combustion. It was found that 

there was very little difference between the two UCB measurements for aerosols from 

flaming combustion even though the ratios are significantly lower than the DustTrak to filter 

ratio for these aerosols. When comparing the DustTrak and the gravimetric mass 

measurements with the mass obtained from the UCB sensor, the latter mass was within ±5–

10 % of the former mass measurements, indicating its potential capability for use as a low-

cost particle analyzer. The lower ratios of DustTrak mass to UCB mass for aerosols from 

flaming combustion may be a reflection of their different sizes and morphologies, discussed 

in greater detail below.

4.2. Scattering and Extinction Data

Similar to the mass, angular scattering measurements of aerosols vary depending on the 

source and the mode from which they were generated. Using a six-angle scattering device, 

angular scattering intensities were obtained to understand the scattering signature of aerosols 

from the various sources and to quantify differences, where they were found to exist. Figure 

4a displays the normalized aerosol angular scattering signatures generated for flaming 

combustion and Figure 4b displays those for smoldering combustion for the three 

combustibles tested, namely Douglas-fir wood, Pittsburgh seam coal, and SBR rubber. The 

data indicate that each of the different aerosols have characteristic angular intensity 

distributions for both flaming and smoldering modes. It is expected that these distributions 

reflect differences in the absorbing nature of the individual aerosols (i.e., their chemical 

composition) as well as differences in the fractal aggregate structure and size.

It is also evident that at forward angles the aerosols generated from smoldering combustion 

scatter with higher intensities than the aerosols from flaming combustion. In fact, for all the 

forward angles and two wavelengths measured in these studies, the average scattering 

intensity for aerosols from smoldering combustion was 36 % higher than the average 

intensity measured for flaming combustion. In addition to differences in aerosol chemistry, 

this may be due to the clumping and more compact shape of the aggregates generated from 

smoldering combustion, which is quite evident in the TEM/SEM images shown later in this 

report.

Figures 5 and 6 represent the scattering intensities of the fractal aggregates per unit mass 

concentration obtained at 635 nm wavelength for both flaming and smoldering combustion. 

The scattering intensity is very similar to I/I0. For aerosols from both flaming and 

smoldering combustion, the intensities per unit mass concentration are significantly higher 

(typically, by a factor of 2 to 4) at the lower angles of 15° and 22½°, indicating that the use 

of forward angles in this range has higher sensitivity for detection and measurement of lower 
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aerosol mass concentrations. In addition, the intensity per unit mass for aerosols from 

flaming combustion decreases more sharply with increasing angle than does the intensity per 

unit mass for aerosols from smoldering combustion. Again, these differences are due to the 

differences in aggregate chemistry and morphology for the flaming and smoldering modes 

of combustion. Previous theoretical modeling of the angular intensity distributions has 

shown that very low values of the imaginary component of the index of refraction are 

necessary in order to reproduce the experimental data for aerosols from smoldering 

combustion, while much higher values (typical of very high carbon content) are necessary 

for aerosols from flaming combustion [1].

As discussed in Sects. 2 and 3, light extinction data were obtained using both broadband 

visible light and monochromatic electromagnetic radiation at λ = 532 nm while the total 

scattering coefficient was measured using an integrating nephelometer operating at λ = 520 

nm. From these data and the corresponding mass concentrations, the mass absorption, mass 

extinction and mass scattering coefficients were calculated and are shown in Table 3. From 

the data it is quite evident that the mass extinction coefficients for aerosols from flaming 

combustion are significantly higher than values reported in the literature, while the mass 

scattering coefficients are relatively lower and constant, resulting in very high mass 

absorption coefficients (average of 11.3 m2/g compared to an average of 7.5 m2/g reported 

by Bond and Bergstrom) [1]. The mass extinction coefficients for aerosols from smoldering 

combustion are in much better agreement with the values that are reported in the literature 

[1]. Overall, the mass extinction coefficient for aerosols generated from flaming combustion 

was more than twice that for aerosols from smoldering combustion. It is also worth noting 

that the mass extinction coefficients for aerosols from smoldering combustion are almost 

entirely due to scattering (average albedo is 0.87) while those from aerosols from flaming 

combustion are dominated by absorption (average albedo is 0.27).

4.3. Fractal Aggregate Properties

As stated in Sect. 3, the response of the prototype ion chamber was obtained to quantify 

fractal aggregate properties and to compare these to the values obtained from the UCB 

sensor measurements. These data, along with parameters from the optical scattering data, 

were used to calculate properties of the fractal aggregates. The results of the angular 

scattering computations provided the radius of gyration (Rg) and fractal dimension (Df). 

From the ion chamber data, the number mean diameter (dg), number of aggregates per cubic 

centimeter (N), mass of a fractal aggregate (Ma), diameter of primary particle (dp), and 

number of primary particles per aggregate (np) were also calculated using Eqs. (4)–(12). 

These ion chamber calculations were compared with similar calculations obtained from the 

UCB sensor data and are tabulated in Table 4. These data provide a unique and complete 

description of the physical properties of the differing fractal aggregates generated from 

flaming and smoldering fires. It should be noted that when calculating the fractal properties 

using the UCB device, the Rg was calculated using average Rg/dg ratios obtained from a 

previous study [17]. Also, constant values were used for Df, where for aerosols generated 

from flaming fires, Df = 1.85 was used, while for aerosols generated from smoldering fires, 

Df = 2.1 was used. The detailed theory and calculations for both the ion and optical 

responses of the UCB sensor are published elsewhere [13].
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Analysis of Table 4 data shows several distinctive trends relative to the aerosols from 

flaming versus those from smoldering combustion. First, aerosols from flaming combustion 

have higher values of Rg, but smaller values of primary particle diameter, dp. The fractal 

dimension, Df, of aerosols from flaming combustion have an average value of 1.80, while 

for aerosols from smoldering the average is 2.26, with both values consistent with data from 

the literature. Flaming combustion produces fractal aggregates with small primary particles 

but large numbers of primary particles per aggregate, with the result that the average mass of 

a fractal aggregate is more than three times lower than the corresponding average mass of 

FAs from smoldering combustion. It is also interesting to note that the average number mean 

diameter calculated for FAs from flaming combustion is 30 % less than the average for 

smoldering combustion, while the average Rg for FAs from flaming combustion is 30 % 

higher. When comparing these data with the measurements obtained from the UCB sensor, 

the values are in good agreement. One interesting phenomenon is that the calculated Rg with 

the UCB sensor is higher than the ion chamber measurements for aerosols generated from 

flaming combustion, but the reverse is true for aerosols generated from smoldering 

combustion, where the UCB measurement is smaller than the ion chamber measurements.

Representative SEM/TEM photographs from samples collected from flaming and 

smoldering combustion for combustible materials used in the present study are shown in 

Figures 7 and 8. It is evident from these photographs that the aerosols produced from 

flaming combustion are fractal aggregates with relatively small primary particles and 

elongated, chain-like morphologies (smaller Df), while those produced from smoldering 

combustion have larger primary particles and clumped or more densely packed 

morphologies (larger Df). These images are consistent with the aggregate properties 

presented in Table 4 and agree qualitatively with results from previous studies. In these 

previous studies, soot particles produced from fuel-lean and stoichiometric combustion 

generally produced a more elongated, chain-like structure with very little overlap of 

individually connected particles. As the combustion became more fuel-rich, the aggregate 

structure gradually evolved to the more compact form, with fractal dimensions increasing 

with the fuel–air ratio [13]. When comparing the microscopic measurements with the values 

calculated from the experimental data, there is reasonably good agreement. For instance, the 

Rg (~400 nm) and dp (~50 nm) measurements obtained for aerosols from the flaming SBR 

images are in close agreement with the calculated values of 280 nm and 35 nm, respectively, 

from Table 4. The images are being further analyzed in much detail using commercial 

software and the results are to be published in a future separate manuscript.

4.4. Sensor Response Data

The data for the prototype OPTION sensor are also analyzed in terms of its responses per 

unit mass concentration as functions of the dimensionless ratios of ionization signal voltage, 

CEV, to optical scattering voltages at both 15° and 30°, V15 and V30, respectively. As 

previously mentioned in the Introduction, these sensitivities are found to vary with the signal 

ratios—a dimensionless and easily measured quantity. The results indicate that it is possible 

to utilize this simple ratio to define regions of sensitivity and regions of discrimination that 

can aid in the fire detection process as well as discriminate against other non-fire related 

sources. Application of the sensor as a smoke detector, for instance, in areas that may 
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contain significant levels of diesel exhaust particles, has been previously shown to work 

quite well, where DPM has a very high value of both CEV/V15 and CEV/V30, allowing for 

very good discrimination capabilities [11].

In order to understand this phenomenon better, a series of experiments were conducted using 

polyvinyl chloride (PVC) belt, a common fire-retardant conveyer belt used in the mining 

industry, and No. 2 diesel fuel, and the responses of the ion chamber and optical chamber 

were measured. In Figure 9, these data are compared to the data obtained for aerosols 

produced from the exhaust of a diesel engine, where it is evident that the ratio of ionization 

response to optical response varies with flaming and smoldering combustion as well as with 

diesel exhaust. For smoldering combustion, consistent with results from the previous study, 

the average measured ratio was 1 or less than 1; for flaming combustion, this response ratio 

was in the range of 1 to 8; for the diesel exhaust, this response ratio was at least 10 or 

greater. Large differences such as these in this simple response ratio have significant 

potential not only to discriminate between aerosols from fires and those from diesel 

exhausts, but also to discriminate between flaming and smoldering modes of combustion. 

This latter capability could further be used to qualitatively assess the relative levels of 

carbon in the fractal aggregates.

5. Conclusion

Overall, when the mass concentration measurements of aerosols generated from different 

combustion sources using TSI DustTrak Models 8520 and 8530 are compared with 

gravimetric filter samples, a constant ratio of ~3.5 is obtained which can be used in future 

studies involving combustion-generated aerosols. Because the DustTrak uses light scattering 

to measure the mass concentration, the factory calibration using Arizona road dust does not 

appear suitable for the type of combustion aerosols generated from fires involving coal, 

wood, and rubber, and most probably other combustion sources, because of their smaller 

particle size (≤0.5 μm). It was found from the data acquired during this study that the 

DustTrak correction factor for aerosols generated from smoldering combustion is 3.39, 

compared to a value of 3.55 for the aerosols generated from flaming combustion, with an 

overall average value of 3.47. These values are significantly higher than previously reported 

values that ranged from 1.94 to 3.0, and should be applied in any application where the 

DustTrak devices may be used to measure combustion-generated aerosols. In addition, to the 

knowledge of the authors, this is the first report to distinguish two DustTrak correction 

factors for aerosols generated from both flaming and smoldering combustion.

When comparing the DustTrak mass concentration measurements with the mass 

concentrations calculated from the UCB sensor data, the numbers correlate very well, 

indicating the potential capability to use the modified UCB sensor as a low-cost particle 

monitor. The measurements obtained from TEM/SEM images are also in good agreement 

with the calculated measurements and tend to further validate the capability of the modified 

UCB sensor, along with this optical/ionization technique, for measurement and 

characterization of aerosols produced from combustion.
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The data obtained from the ionization chamber response of the OPTION sensor and the 

UCB sensor above give a comprehensive summary of the optical and physical properties of 

fractal aggregates generated from a variety of combustible sources for both flaming and 

smoldering combustion. The data conclusively indicate that while all of the aerosols 

generated could be described as fractal aggregates, significant differences in their 

morphology and size exist both as a function of combustion source and combustion mode, 

and that these differences result in different fractal properties which can subsequently be 

used to describe the fractal aggregates in analytical terms. In addition, this fundamental 

information on the optical and physical properties of smoke particles generated from 

combustion processes can be used toward the design and modification of more reliable and 

effective smoke detectors which will be beneficial for the safety and health of miners.
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List of Symbols

dg Number mean Diameter

Df Fractal dimension

dp Diameter of primary particles (nm)

d10 Count mean diameter (cm)

Di Ion diffusion coefficient (cm3/s)

I0 Incident intensity of the light

I Reduced intensity of light

kf Fractal pre-factor

l Path length (m)

M Aerosol mass concentration (mg/m3)

Ma Mass of a fractal aggregate

np Number of primary particles per aggregate

N Number of aggregate per cm3

Rg Radius of gyration

xp Size parameter

σext Mass specific extinction (m2/g)

σsca Mass specific scattering (m2/g)

σabs Mass specific absorption (m2/g)
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λ Wavelength (nm)

ρp Particle density (g/m3
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Figure 1. 
Correlation of ionization-chamber response per unit mass concentration (CEV/M) and 

angular-scattering response per unit mass concentration (V45/M), with the dimensionless 

ratio of ionization-chamber voltage to angular-scattering voltage measured at 45°, CEV/V45.
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Figure 2. 
Variation of the DustTrak mass concentration vs time for smoldering Douglas-fir 3.
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Figure 3. 
Average DustTrak correction factors for different smoldering and flaming combustion 

sources.
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Figure 4. 
(a) Scattering intensities (I/I0) for aerosols produced from flaming combustion versus 

modulus of the scattering vector, q, for different combustion sources. (b) Scattering 

intensities (I/I0) for aerosols produced from smoldering combustion versus modulus of the 

scattering vector, q, for different combustion sources.
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Figure 5. 
Scattering intensities per unit mass (I/M) for aerosols from flaming combustion at 635 nm 

versus the modulus of the scattering vector, q.
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Figure 6. 
Scattering intensities per unit mass (I/M) for aerosols from smoldering combustion at 635 

nm versus the modulus of the scattering vector, q.
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Figure 7. 
SEM images of (a) flaming and (b) smoldering coal, (c) flaming and (d) smoldering SBR 

rubber & (e) flaming and (f) smoldering Douglas-fir wood. Note that the large pores are 

from the filter paper background.
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Figure 8. 
SEM images of (a) flaming and (b) smoldering coal, (c) flaming SBR rubber, and (d) 

flaming Douglas-fir wood.
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Figure 9. 
Ratio of ionization response to photoelectric response for aerosols from smoldering PVC, a 

diesel fuel pool fire, and diesel exhaust.
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Table 1

Gravimetric Measurements of the Aerosols of Interest from DustTrak and Filter Measurements

Aerosols from smoldering combustion Aerosols from flaming combustion

DustTrak mass 
conc. (mg/m3)

Filter mass 
conc. (mg/m3)

Correction factor
DustTrak mass 
conc. (mg/m3)

Filter mass 
conc. (mg/m3)

Correction factor

Douglas-fir-1 57.97 15.91 3.64 66.59 24.76 2.69

Douglas-fir-2 62.60 20.75 3.02 84.49 17.46 4.84

Douglas-fir-3 49.58 15.24 3.25 48.66 19.59 2.48

Douglas-fir-4 51.76 15.71 3.29 78.90 19.05 4.14

Douglas-fir-5 74.52 17.14 4.35 N/A N/A N/A

Pgh coal-1 46.56 11.43 4.07 61.94 13.33 4.65

Pgh coal-2 68.36 21.98 3.11 69.06 17.14 4.03

Pgh coal-3 59.97 16.33 3.67 54.08 15.88 3.41

Pgh coal-4 89.20 28.57 3.12 59.37 19.64 3.02

Pgh coal-5 N/A N/A N/A 62.33 19.78 3.15

Pgh coal-6 N/A N/A N/A 60.97 13.33 4.57

Pgh coal-7 N/A N/A N/A 70.79 32.38 2.19

SBR rubber-1 46.15 24.18 1.91 53.13 24.29 2.19

SBR rubber-2 57.05 22.45 2.54 68.09 18.37 3.71

SBR rubber-3 59.48 17.96 3.31 40.04 13.33 3.00

SBR rubber-4 67.66 14.51 4.66 58.93 16.26 3.62

SBR rubber-5 51.93 31.91 1.63 54.97 13.85 3.97

SBR rubber-6 61.16 11.67 5.24 50.67 10.91 4.64

Average 3.39 (±0.96) 3.55 (±0.87)
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Table 3

Scattering, Extinction and Absorption Coefficients for Aerosols for the Different Combustion Sources

σext (532 nm) σsca (532 nm) σabs (532 nm) σext (visible) Albedo

Flaming

Douglas-fir 16.704 2.490 14.214 13.700 0.149

Pgh coal 13.603 4.368 9.197 11.877 0.321

SBR rubber 16.062 5.447 10.615 11.102 0.339

Average of all tests 15.456 4.102 11.342 12.226 0.270

Non flaming

Douglas-fir 7.594 6.607 0.987 4.279 0.870

Pgh coal 7.036 6.213 0.823 5.218 0.883

SBR rubber 8.272 7.166 1.107 4.513 0.866

Average of all tests 7.634 6.662 0.972 4.670 0.873
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Table 4

Aerosol Particle Properties Calculated from the UCB Sensor and OPTION Sensor

Pgh coal Douglas-fir SBR rubber

UCB data Ion chamber UCB data Ion chamber UCB data Ion chamber

Flaming

Rg 430 325 454 270 410 252

dg 241 223 254 290 230 230

N 865277 1871019 1121610 1678818 1083182 2560975

Ma 2.61E–14 8.75E–15 3.25E–14 1.57E–14 2.25E–14 8.94E–15

dp 33 23 35 41 33 36

nP 755 1535 755 4517 754 729

Mass conc. 23 16 20 19 24 19

Df 1.85 1.77 1.85 2.3 1.85 1.73

Smoldering

Rg 204 227 193 237 181 237

dg 249 400 235 349 221 383

N 589123 648010 685364 780524 921840 608331

Ma 2.97E–14 3.45E–14 2.43E–14 2.91E–14 2.02E–14 4.04E–14

dp 102 82 97 60 91 81

nP 28 144 28 343 28 424

Mass conc. 16 19 16 22 18 23

Df 2.21 2.30 2.21 2.22 2.21 2.17
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